logo
company-profile-image
Coursera
verify
like
share-icon
employees
Количество сотрудников:
500-1500
activeJob
Этот тренинг был просмотрен 4891 раз
Вы также можете проверить

Mathematics for Machine Learning: PCA

Тип компании:
Электронное обучение
Категория:
Анализ данных
Язык:
Английский
Местонахождение:
Онлайн
Цена:
49 USD
День проведения:
eye-icon
По запросу
Детали тренинга:

This intermediate-level course introduces the mathematical foundations to derive Principal Component Analysis (PCA), a fundamental dimensionality reduction technique. We'll cover some basic statistics of data sets, such as mean values and variances, we'll compute distances and angles between vectors using inner products and derive orthogonal projections of data onto lower-dimensional subspaces. Using all these tools, we'll then derive PCA as a method that minimizes the average squared reconstruction error between data points and their reconstruction.

At the end of this course, you'll be familiar with important mathematical concepts and you can implement PCA all by yourself. If you?re struggling, you'll find a set of jupyter notebooks that will allow you to explore properties of the techniques and walk you through what you need to do to get on track. If you are already an expert, this course may refresh some of your knowledge. The lectures, examples and exercises require: 1. Some ability of abstract thinking 2. Good background in linear algebra (e.g., matrix and vector algebra, linear independence, basis) 3. Basic background in multivariate calculus (e.g., partial derivatives, basic optimization) 4. Basic knowledge in python programming and numpy Disclaimer: This course is substantially more abstract and requires more programming than the other two courses of the specialization. However, this type of abstract thinking, algebraic manipulation and programming is necessary if you want to understand and develop machine learning algorithms.

WHAT YOU WILL LEARN

  • Implement mathematical concepts using real-world data

  • Derive PCA from a projection perspective

  • Understand how orthogonal projections work

  • Master PCA

Дополнительная информация

SKILLS YOU WILL GAIN

  • Dimensionality Reduction
  • Python Programming
  • Linear Algebra
Выступающие:

Instructor rating3.84/5�(170 Ratings)

Image of instructor, Marc Peter Deisenroth

Marc Peter Deisenroth

Lecturer in Statistical Machine Learning

Department of Computing

52,491�Learners

1�Course

Участие
Запишитесь сейчас
Поделись с друзьями:
fb-icon-share
fb-icon-share
fb-icon-share